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Abstract
The origin of extended-range ordering in binary liquids and glasses is
investigated. The starting point is a simple model pair potential which includes
both Coulomb and dispersion forces. For this model, the behaviour of the
Bhatia–Thornton partial structure factors at small scattering vector values is
examined and also the asymptotic behaviour of the associated partial pair
correlation functions in real space. The results are compared with the observed
real space pair correlation functions for a range of liquid and glassy systems for
which accurate partial structure factors have been measured by using neutron
diffraction. It is found that the extended range ordering can often be accounted
for by using an exponentially damped oscillatory function with a wavelength
of oscillation given by ≈2π/kPP, where kPP is the position of the principal
peak in the measured partial structure factors. Sometimes this exponentially
damped oscillatory function also accounts for the observed behaviour of the
real space data at relatively small distances as in the case of the concentration–
concentration pair correlation function for molten Ag2Se and for glassy
GeSe2, ZnCl2 and GeO2. For these glasses, all of the Bhatia–Thornton pair
correlation functions in real space eventually decay with a common wavelength
of oscillation and a common decay length. The limitations associated with
the use of simple model pair potentials to analyse the experimental data
sets are discussed. In addition, the effect on the small-angle scattering and
asymptotic decay of the real space pair correlation functions of including a
term corresponding to ion-induced dipole interactions in the pair potential is
briefly considered. An analytical expression is also given for the real space
manifestation of the Lorch modification function.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The atomic structure of liquids and glasses at distances greater than the nearest-neighbour
remains an outstanding challenge in the science of disordered materials [1–8]. For network
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forming materials, the focus of attention is usually on the origin of a so-called first sharp
diffraction peak (FSDP) in the measured diffraction patterns at a scattering vector kFSDP ≈ 1–
1.5 Å

−1
. This feature does not, for example, appear in the diffraction patterns of simple molten

salts [9] and its occurrence is taken to be a signature of intermediate-range atomic ordering
having a periodicity 2π/kFSDP and a coherence length 2π/�kFSDP, where �kFSDP is the full
width at half maximum of the FSDP. Recently, diffraction experiments on network glasses
have shown that there is also atomic ordering that extends to distances well beyond the domain
of the FSDP and which has a periodicity given by approximately 2π/kPP, where kPP ≈ 2.0–
2.7 Å

−1
is the position of the principal peak in the measured diffraction patterns [10–12]. It is

therefore important to understand the origin of the intermediate- and extended-range ordering,
especially as it should give structural insight into important phenomena such as the relative
fragility of glass forming liquids [12, 13], the nucleation and growth of crystals from the liquid
or glassy phase [14–16] and the existence, or otherwise, of polyamorphic phase transitions
i.e. distinct changes in the structure of a liquid or glass with change of density [13, 17–20]. It is
also important to develop a link between the extended range ordering and the asymptotic decay
of pair correlation functions for which theories have been developed [21–25]. This asymptotic
behaviour is of interest not only for bulk uniform fluids but also for inhomogeneous fluids; e.g.,
the eventual decay of the pair correlation functions for a simple fluid will be the same in the
bulk and at large distances away from an interface such as a planar wall [21, 26]. In addition,
large-scale computer simulations of liquids and glasses are becoming increasingly sensitive to
the asymptotic behaviour of the pair correlation functions and, concomitantly, to the small-
k behaviour of the partial structure factors, where k denotes the magnitude of the scattering
vector [27, 28].

Motivation is therefore provided to examine the origin of extended-range ordering in
structurally disordered systems and to search for the signature of this ordering in the measured
partial pair correlation functions. A suitable starting point is provided by the Ornstein–Zernike
equations for an isotropic binary system [29–31] and the formalism is developed for the so-
called Bhatia–Thornton [32] number–number, SNN(k), concentration–concentration, SCC(k),
and number–concentration, SNC(k), partial structure factors, which separate the contributions
to a measured diffraction pattern from the number density and concentration fluctuations
(section 2.1). For definiteness it will be assumed that expressions describing the equilibrium
properties of the liquid phase also provide a guide to the properties of the corresponding glass,
i.e. to the liquid phase after it has fallen out of equilibrium [33]. The development of the
formalism follows that of Tosi and co-workers [34] and Evans and co-workers [21–23], but the
previous work is extended to two-component systems of arbitrary composition and the effects
of dispersion and ion-induced dipole forces are considered in greater detail. The Bhatia–
Thornton partial structure factors are often used by experimentalists and the use of number
density and concentration as the choice of variables enables the formalism to be readily applied
to non-ionic systems, where the relation between concentration and charge density fluctuations
can be non-trivial [7]. When possible, a comparison is made with previous results, e.g. those
obtained for symmetrical binary mixtures.

To provide a benchmark for testing more complicated scenarios, a simple model pair
potential is considered, in which there are short-ranged repulsive, Coulomb and dispersion
terms (section 2.2). For this potential, the small-k behaviour of the Bhatia–Thornton SI J (k)

(where I, J = N, C) is examined, corresponding to the small-angle scattering measured in
a diffraction experiment, and it is found that these partial structure factors are described by
terms with different lowest odd integer powers of k (section 2.3), in agreement with the recent
results of Kjellander and Forsberg [35]. One feature of the Bhatia–Thornton formalism is an
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occasional decoupling between the number density and concentration fluctuations as illustrated
in section 2.4 for symmetrical binary mixtures. In real space, the asymptotic decay of the
pair correlation functions is first considered for the case of the model pair potential when
dispersion forces are absent (section 2.5). Recourse is made to the results of Leote de Carvalho
and Evans [22], who made a pole analysis of the k-space solutions to the Ornstein–Zernike
equations and found that the pair correlation functions all decay either (i) with a monotonic
exponential dependence having a common decay length or (ii) with an exponentially damped
oscillatory dependence having a common decay length and common wavelength of oscillation.
The corresponding decay of the moments of the Bhatia–Thornton pair correlation functions
is also discussed (section 2.6). The asymptotic decay of the pair correlation functions is then
considered for the case of the model pair potential when dispersion forces are present. In
this case, the longest ranged behaviour in real space is instead expected to have a power law
dependence [23, 35, 36] and relevant expressions are given in section 2.7.

The behaviour of the measured Bhatia–Thornton pair correlation functions is then
considered for a variety of different binary liquid and glassy systems for which sufficiently
accurate experimental results are available (section 3). For several of the systems it is found
that, within the experimental error, the measured extended range ordering can be described
in terms of exponentially damped oscillatory functions, i.e. it has some of the characteristics
expected for the asymptotic decay of the pair correlation functions as deduced from a pole
analysis of the Ornstein–Zernike equations for the model pair potential when dispersion forces
are absent. The implications of the results are discussed (section 4) before conclusions are
drawn (section 5).

2. Theory

2.1. Total pair correlation functions for a binary system

Consider an isotropic binary system comprising chemical species a and b. The partial pair
distribution functions gi j(r) give a measure of the probability of finding any two particles
labelled by i and j (i, j = a, b) separated by a distance ri j = |ri −r j |. The total pair correlation
functions are defined by hi j (r) ≡ gi j(r)−1 and, therefore, also describe the overall correlation
between particles i and j . They are related to the direct pair correlation functions ci j(r) via the
Ornstein–Zernike equations, which, for a binary system, can be written as [29–31]

hi j (r12) = ci j(r12) + ρa

∫
d3r3 cia(r13)haj (r32) + ρb

∫
d3r3 cib(r13)hbj (r32) (1)

where ρi ≡ Ni /V is the number density of particles of species i and V is the volume.
Equation (1) defines ci j(r) and thereby separates the total correlation of atoms i and j into
a direct part which depends only on their relative position ri j and indirect parts which depend,
through the integrands, on the correlated positions of all the other particles. This description
of the structure does not depend on the equilibrium state of the system and should therefore
apply to both liquids and glasses [37]. Application of the convolution theorem enables the
Ornstein–Zernike equations to be written in Fourier space as

ĥi j (k) = ĉi j(k) + ρaĉia(k)ĥa j(k) + ρbĉib(k)ĥbj (k) (2)

where the Fourier transform of hi j(r) is given by

ĥi j (k) = 4π

k

∫ ∞

0
dr r hi j(r) sin(kr) (3)
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and an equivalent expression defines ĉi j(k) as the Fourier transform of ci j(r). By solving these
Ornstein–Zernike equations it follows that

ĥaa(k) = ĉaa(k) + ρb[ĉab(k)2 − ĉaa(k)ĉbb(k)]
D(k)

ĥbb(k) = ĉbb(k) + ρa[ĉab(k)2 − ĉaa(k)ĉbb(k)]
D(k)

ĥab(k) = ĉab(k)

D(k)
= ĉba(k)

D(k)
= ĥba(k)

(4)

where ĉab(k) = ĉba(k) and the common denominator

D(k) = [
1 − ρaĉaa(k)

] [
1 − ρbĉbb(k)

] − ρaρbĉab(k)2. (5)

The so-called Faber–Ziman [38] partial structure factors (also see [39]) are defined by
Si j (k) ≡ ρĥi j (k), where ρ = ρa + ρb = N/V is the total atomic number density of the
system and N is the total number of particles. In a diffraction experiment on a binary system,
the measured coherent scattered intensity can be represented in terms of these functions by the
total structure factor [40]

F(k) = x2
a f 2

a [Saa(k) − 1] + 2xaxb fa fb[Sab(k) − 1] + x2
b f 2

b [Sbb(k) − 1] (6)

where xi = Ni /N and fi are the atomic fraction and coherent scattering length of species i
respectively. The Faber–Ziman partial structure factors are the functions most often shown in
experimental work. Often it is useful, however, to re-write the measured intensity in terms of
the Bhatia–Thornton [32] number–number, SNN(k), concentration–concentration, SCC(k), and
number–concentration, SNC(k), partial structure factors such that

F(k) = 〈 f 〉2[SNN(k) − 1] + xaxb( fa − fb)
2[SCC(k)/xaxb − 1] + 2〈 f 〉( fa − fb)SNC(k) (7)

where 〈 f 〉 = xa fa + xb fb is the average coherent scattering length (also see [29]). SNN(k) will
therefore be measured directly in a diffraction experiment if fa = fb, whereas SCC(k) will be
measured directly if 〈 f 〉 = 0. Since the Bhatia–Thornton SI J (k) (where I, J = N, C) separate
the number density from the concentration fluctuations they have a simple interpretation in the
thermodynamic (k = 0) limit, where [32]

SNN(0) = ρkBT χT + δ2SCC(0) (8)

SCC(0) = kBT/(∂2G/∂x2
a)T,p,N (9)

SNC(0) = −δSCC(0). (10)

In these equations kB is the Boltzmann constant, T is the absolute temperature, p is the pressure,
G is the Gibbs free energy per particle, χT is the isothermal compressibility, δ ≡ ρ(va − vb)

is the dilation factor, and vi is the partial molar volume per particle of chemical species i . We
note that in a neutron or x-ray diffraction experiment, a complete diffraction pattern is made by
averaging the ‘snapshots’ taken of the system by each of the incident quanta, i.e. it is made by
summing up all the contributions that arise from the scattered intensity from all the coherence
volumes in the sample [40]. Since the number density and concentration of particles within the
different coherence volumes is not fixed, the diffraction experiments are sensitive to fluctuations
in these quantities.

The number–number partial structure factor is related to the corresponding partial pair
distribution function by the Fourier transform

SNN(k) − 1 = 4πρ

k

∫ ∞

0
dr r [gNN(r) − 1] sin(kr) (11)
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and equivalent Fourier transforms relate [SCC(k)/xaxb − 1] to gCC(r) and SNC(k)/xaxb to
gNC(r). In terms of the total pair correlation functions for the atomic species

hNN(r) ≡ gNN(r) − 1 = x2
a haa(r) + x2

bhbb(r) + 2xaxbhab(r)

hCC(r) ≡ gCC(r) = xa xb [haa(r) + hbb(r) − 2hab(r)]

hNC(r) ≡ gNC(r) = xa[haa(r) − hab(r)] − xb[hbb(r) − hab(r)].
(12)

The topological ordering in the system is described by gNN(r), which gives the sites of the
scattering nuclei but does not distinguish between the chemical species that decorate those
sites; the chemical ordering is described by gCC(r), which has positive or negative peaks when
there is a preference for like or unlike neighbours respectively; and the correlation between
sites and their occupancy by a given chemical species is described by gNC(r) [9, 41]. By using
equations (4) it can then be shown that the Bhatia–Thornton partial structure factors are related
to the Fourier transforms of these total pair correlation functions by

SNN(k) = ρĥNN(k) + 1 = 1 − ρĉCC(k)

D(k)
(13)

SCC(k)

xaxb
= ρĥCC(k) + 1 = 1 − ρĉNN(k)

D(k)
(14)

SNC(k)

xaxb
= ρĥNC(k) = ρĉNC(k)

D(k)
(15)

where equation (5) can be re-written as

D(k) = [1 − ρĉNN(k)][1 − ρĉCC(k)] − ρaρbĉNC(k)2 (16)

and the direct pair correlation functions cNN(r), cCC(r) and cNC(r) are defined in terms of the
ci j(r) for the atomic species by expressions that are equivalent to equations (12).

2.2. Binary system with both Coulomb and dispersion forces

Consider a binary ionic system where chemical species a and b have positive and negative
charges of Zae and Zbe respectively and e is the elementary charge. Let the interaction between
any two particles labelled by i and j separated by a distance r be represented by a pair potential
which contains a short-ranged repulsive term φsr

i j(r), a Coulomb term φCoul
i j (r) ∝ r−1, and a

dispersion term φ
disp
i j (r) ∝ r−6 such that

φi j(r) = φsr
i j(r) + Zi Z j e2

ε r
− Ai j

r 6
(17)

where ε ≡ 4πεrε0, εr is the dimensionless relative dielectric constant of the medium in which
the ions are immersed and ε0 is the vacuum permittivity. The dispersion term results from
induced dipole—induced dipole interactions and Ai j is a parameter (�0) which depends on
the polarizability of the ions [42]. Equation (17) is an example of a rigid-ion potential and
represents one of the simplest simulation models for ionic systems [43–45]. If it is assumed that
at large r the direct correlation function is given by ci j(r) = −βφi j(r) [30], where β ≡ 1/kBT ,
then

ci j(r) ≡ csr
i j(r) − β

Zi Z j e2

ε r
+ β

Ai j

r 6
. (18)

The Fourier transform of ci j(r) is then given by

ĉi j(k) = ĉsr
i j(k) − 4πβ Zi Z j e2

ε k2
+ αi j k3 (19)
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where αi j = π2β Ai j/12 [23, 36]. The csr
i j(r) will be taken to be exponentially short ranged

such that at small k

ĉsr
i j(k) = csr(0)

i j + csr(2)
i j k2 + csr(4)

i j k4 + · · · (20)

where the moments are given by

csr(2n)
i j = 4π(−1)n

(2n + 1)!
∫ ∞

0
dr csr

i j(r) r 2n+2 (21)

and n = 0, 1, 2, . . ..
By using equation (19) and the condition for overall charge neutrality xa Za + xb Zb = 0 it

can be shown that the Fourier transforms of the direct correlation functions cNN(r), cCC(r) and
cNC(r) are given by

ĉNN(k) = ĉsr
NN(k) + αNN k3 (22)

ĉCC(k) = ĉsr
CC(k) − κ2

D

ρ
k−2 + αCC k3 (23)

ĉNC(k) = ĉsr
NC(k) + αNC k3 (24)

where the inverse Debye screening length, κD, is given by

κ2
D = 4πβe2

ε
(ρa Z 2

a + ρb Z 2
b), (25)

the short-ranged parts of the direct correlation functions are given by

ĉsr
NN(k) = x2

a ĉsr
aa(k) + x2

b ĉsr
bb(k) + 2xaxbĉsr

ab(k) (26)

ĉsr
CC(k) = xa xb[ĉsr

aa(k) + ĉsr
bb(k) − 2ĉsr

ab(k)] (27)

ĉsr
NC(k) = xa[ĉsr

aa(k) − ĉsr
ab(k)] − xb[ĉsr

bb(k) − ĉsr
ab(k)], (28)

and equivalent expressions define αNN, αCC and αNC in terms of the αi j . Hence

SNN(k) = κ2
D + [1 − ρĉsr

CC(k)]k2 − ραCC k5

k2 D(k)
,

SCC(k)

xaxb
= [1 − ρĉsr

NN(k)]k2 − ραNN k5

k2 D(k)
,

SNC(k)

xaxb
= ρĉsr

NC(k) k2 + ραNC k5

k2 D(k)

(29)

where

k2 D(k) = κ2
D[1 − ρĉsr

NN(k)]
+ [(1 − ρĉsr

NN(k))(1 − ρĉsr
CC(k)) − ρaρb ĉsr

NC(k)2]k2 − ρ αNN κ2
D k3

− [ραNN(1 − ρĉsr
CC(k)) + ραCC(1 − ρĉsr

NN(k)) + 2ρaρb αNCĉsr
NC(k)]k5

+ [ρ2αNNαCC − ρaρb α2
NC]k8. (30)

These formulae for the Bhatia–Thornton partial structure factors reduce to those previously
obtained by Leote de Carvalho and Evans [22] for the case of a 1:1 binary ionic fluid where the
ions have equal but opposite charges and there are no dispersion forces.

Note that if a liquid or glass can be fully described as a binary ionic system, i.e. as
a two-component system comprising cations and anions, then it is usual to describe the
fluctuations in number and charge density rather than the fluctuations in number density and
concentration [30, 46]. With the imposition of overall charge neutrality xa Za + xb Zb = 0 it
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can be shown that charge–charge, SZZ(k), and number–charge, SNZ(k), partial structure factors
can be defined, where

SCC(k) = xaxb SZZ(k), (31)

SNC(k) = (xb/Za)SNZ(k) (32)

i.e. for purely ionic systems the two different descriptions are equivalent. The use of number
density and concentration as the choice of variables is, however, more general, as it applies to
non-ionic systems, and is therefore used throughout this manuscript.

2.3. Small-k behaviour of the partial structure factors

To deduce the small-k limits of the partial structure factors it is important to note that, following
equation (20), ĉsr

NN(k), ĉsr
CC(k) and ĉsr

NC(k) can each be expanded as a series containing even
powers of k. Equation (30) can therefore be re-written as

k2 D(k) = κ2
D(1 − ρĉsr(0)

NN )[1 + ξ (2)k2 + ξ (3)k3 + ξ (4)k4 + ξ (5)k5 + O(k6)] (33)

where

ξ (2) =
[
(1 − ρĉsr(0)

NN )(1 − ρĉsr(0)

CC ) − ρκ2
Dĉsr(2)

NN − ρaρb(ĉ
sr(0)

NC )2
] [

κ2
D(1 − ρĉsr(0)

NN )
]−1

(34)

ξ (3) = −ραNN/(1 − ρĉsr(0)
NN ) (35)

ξ (4) =
[
−ρκ2

Dĉsr(4)
NN − ρĉsr(2)

NN (1 − ρĉsr(0)

CC ) − ρĉsr(2)

CC (1 − ρĉsr(0)
NN )

− 2ρaρbĉsr(0)
NC ĉsr(2)

NC

] [
κ2

D(1 − ρĉsr(0)
NN )

]−1
(36)

ξ (5) =
[

− ραNN(1 − ρĉsr(0)

CC ) − ραCC(1 − ρĉsr(0)
NN )

−2ρaρbαNC ĉsr(0)

NC

][
κ2

D(1 − ρĉsr(0)
NN )

]−1
. (37)

At small k-values, it follows from a Taylor expansion of the denominator in equations (29) that

SNN(k) = 1

(1 − ρĉsr(0)
NN )

+ ρκ2
Dĉsr(2)

NN + ρaρb(ĉ
sr(0)
NC )2

κ2
D(1 − ρĉsr(0)

NN )2
k2 + ραNN

(1 − ρĉsr(0)
NN )2

k3 + O(k4), (38)

SCC(k)

xaxb
= k2

κ2
D

− (1 − ρĉsr(0)
NN )(1 − ρĉsr(0)

CC ) − ρaρb(ĉ
sr(0)

NC )2

κ4
D(1 − ρĉsr(0)

NN )
k4

− ρĉsr(4)
NN + (1 − ρĉsr(0)

NN )ξ (4) − ρĉsr(2)
NN ξ (2) − (1 − ρĉsr(0)

NN )(ξ (2))2

κ2
D(1 − ρĉsr(0)

NN )
k6

+ ραCC(1 − ρĉsr(0)
NN )2 + 2ρaρbαNCĉsr(0)

NC (1 − ρĉsr(0)
NN ) + ρρaρbαNN(ĉsr(0)

NC )2

κ4
D(1 − ρĉsr(0)

NN )2
k7

+ O(k8), (39)

SNC(k)

xaxb
= ρĉsr(0)

NC

κ2
D(1 − ρĉsr(0)

NN )
k2 + ĉsr(2)

NC − ĉsr(0)
NC ξ (2)

κ2
D(1 − ρĉsr(0)

NN )
ρ k4 + αNC − ĉsr(0)

NC ξ (3)

κ2
D(1 − ρĉsr(0)

NN )
ρ k5 + O(k6). (40)

Note that equation (39) satisfies the Stillinger–Lovett conditions [47] in the limit as k → 0,
namely SCC(k)/xaxb → (k/κD)2 and SCC(0) = 0. It also follows from equations (8) and (38)
that SNN(0) = ρkBT χT = (1 − ρĉNN(0))−1, where ĉNN(k = 0) = ĉsr(0)

NN (see equations (20)
and (22)) and equation (40) gives SNC(0) = 0 in agreement with equation (10).

Equations (38)–(40) show that the term with the lowest odd integer power of k for SNN(k),
SNC(k) and SCC(k) is proportional to k3, k5 and k7 respectively, in agreement with the results
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of Kjellander and Forsberg [35]. If the dispersion forces are switched off in equation (17),
αNN = αCC = αNC = 0 and the coefficients of these terms vanish. By comparison, if only the
Coulomb interaction is switched off in equation (17), corresponding to a binary system with
short-ranged repulsive forces and long-ranged dispersion forces, the term involving the inverse
Debye screening length, κD, vanishes in equation (23) so that equations (29) and (30) remain
valid provided κD is set equal to zero. The small-k behaviour of the Bhatia–Thornton partial
structure factors can thus be deduced and the term proportional to k3 is the lowest odd integer
power of k for all three partial structure factors SNN(k), SNC(k) and SCC(k).

We note that the present theoretical scheme does not consider the effect of retardation,
where the long range behaviour of the dispersion forces between polarizable ions, and hence the
small-k properties of the partial structure factors, is affected by the finite velocity of propagation
of the electromagnetic field [48]. The role of retardation in rare gas fluids, where the dispersion
term in the pair potential eventually changes at large distances from having an r−6 to an r−7

dependence, is discussed by Reatto and Tau [49].

2.4. Symmetrical binary mixtures

For a symmetrical binary mixture, such as a molten alkali halide, Za = −Zb ≡ Z and
ρa = ρb = ρ/2. The expressions previously found by Rovere et al [34] are then recovered from
the first three terms in equation (38), the first two terms in equation (39) and the first term in
equation (40). As noted by these authors, SNN(k) is the only Bhatia–Thornton partial structure
factor which contains a term in k3 and the only information on the ion polarizability that can be
extracted by measuring the coefficient of this term is contained in αNN. If, in addition, the short-
ranged parts of the potentials are described by ĉsr

aa(k) = ĉsr
bb(k) 	= ĉsr

ab(k) and the dispersion
terms are described by αaa = αbb 	= αab it follows that ĉNC(k) = 0 since ĉsr

NC(k) = 0 and
αNC = 0. Then equations (13), (14) and (15) simplify to

SNN(k) = (1 − ρĉNN(k))−1 (41)

SCC(k)/xa xb = (1 − ρĉCC(k))−1 (42)

SNC(k)/xaxb = 0 (43)

i.e. there is no correlation between the number density and concentration fluctuations. In the
small-k regime the solution to these expressions is given by equations (38), (39) and (40), which
become

SNN(k) = 1

(1 − ρĉsr(0)
NN )

[
1 + ρĉsr(2)

NN

(1 − ρĉsr(0)
NN )

k2 + ραNN

(1 − ρĉsr(0)
NN )

k3 + O(k4)

]
(44)

SCC(k)

xaxb
= k2

κ2
D

− (1 − ρĉsr(0)
CC )

k4

κ4
D

+
[
ρĉsr(2)

CC + (1 − ρĉsr(0)

CC )2

κ2
D

]
k6

κ4
D

+ ραCC
k7

κ4
D

+ O(k8) (45)

with SNC(k) = 0 at all k-values. On imposing the further restriction that ĉsr
aa(k) = ĉsr(k)

bb =
ĉsr

ab(k) and αaa = αbb = αab, it follows that ĉsr
CC(k) = 0 and αCC = 0, such that (see

equation (23)) (1 − ρĉCC(k)) = 1 + κ2
D/k2. Hence equation (42) becomes

SCC(k)

xaxb
= k2

κ2
D

[
1 + k2

κ2
D

]−1

= k2

κ2
D

[
1 − k2

κ2
D

+ k4

κ4
D

− · · ·
]

(46)

where there are no odd powers of k.
If the Coulomb interaction is switched off in equation (17), corresponding to a binary

system with short-ranged repulsive forces and long-ranged dispersion forces, the term involving
the inverse Debye screening length, κD, vanishes in equation (23) so that equations (29) and (30)
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remain valid provided κD is set equal to zero. By investigating the corresponding small-k
behaviour of the Bhatia–Thornton partial structure factors when ĉsr

aa(k) = ĉsr
bb(k) 	= ĉsr

ab(k)

and αaa = αbb 	= αab, it can be readily shown that SNN(k) is again given by equation (44),
SNC(k) = 0 at all k-values, whereas

SCC(k)

xaxb
= 1

(1 − ρĉsr(0)

CC )

[
1 + ρĉsr(2)

CC

(1 − ρĉsr(0)

CC )
k2 + ραCC

(1 − ρĉsr(0)

CC )
k3 + O(k4)

]
. (47)

A random substitutional alloy corresponds to the further impositions ĉsr
aa(k) = ĉsr

bb(k) = ĉsr
ab(k)

and αaa = αbb = αab, whereupon ĉsr
CC(k) = 0, αCC = 0 and SCC(k) = xaxb at all k-values.

2.5. Asymptotic decay of the pair correlation functions: no dispersion forces

The total pair correlation functions hi j (r) for the atomic species are given by the Fourier
transform relations

rhi j (r) = 1

2π2

∫ ∞

0
dk k ĥi j (k) sin(kr). (48)

If dispersion forces are absent in the pair potentials defined by equation (17), the large-r
behaviour of rhi j(r) can be found by using equations (4) and searching for the poles kn

(assumed to be simple) which satisfy D(kn) = 0 in equation (5) and the corresponding residues
Ri j

n of kĥi j(k) at kn [21, 22, 25]. Irrespective of whether the pair potentials contain just the
short-ranged parts or both the short-ranged and Coulomb parts

rhi j (r) = 1

2π

∑
n

exp(
√−1 knr)Ri j

n (49)

i.e. the rhi j(r) can be written as a sum of terms which decay either purely exponentially, if the
poles kn = √−1 a0 are purely imaginary, or as exponentially damped oscillatory functions, if
the pairs of poles kn = ± a1 + √−1 a0 are complex. The term in equation (49) that gives rise
to the slowest exponential decay will define the asymptotic behaviour of rhi j (r) as r → ∞
and this corresponds to the leading order pole kp, which has the smallest imaginary part. Since
the denominator in equations (4) is the same for all of the kĥi j(k), it follows that the rhi j (r)-
functions will eventually decay exponentially with a common decay length given by a−1

0 , and,
if there is also an oscillatory component, a common wavelength of oscillation given by 2π/a1.
The exact form of the eventual decay will depend on the thermodynamic state of the system.
The denominator in equations (13), (14) and (15) is also common for all of the Bhatia–Thornton
partial structure factors and the corresponding rh I J (r) are therefore expected to eventually
decay either with a common decay length or with a common decay length and a common
wavelength of oscillation.

When the leading order pole is purely imaginary, kp = √−1 a0, the asymptotic form for a
total pair correlation function for the atomic species is given by

rhi j (r) → Ai j exp(−a0r) (50)

where the amplitudes are related by AaaAbb = A2
ab [21, 22]. It follows by substituting in

equations (12) that the asymptotic forms of the corresponding Bhatia–Thornton pair correlation
functions are given by

rhNN(r) → ANN exp(−a0r) (51)

rhCC(r) → xa xbACC exp(−a0r) (52)

rhNC(r) → ANC exp(−a0r) (53)
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where the common decay length is given by a−1
0 and

ANN = (xaA1/2
aa + xbA1/2

bb )2 (54)

ACC = (A1/2
aa − A1/2

bb )2 (55)

ANC = xa(Aaa − Aab) − xb(Abb − Aab) (56)

such that ANNACC = A2
NC. Alternatively, a pair of complex leading poles, kp = ±a1+

√−1 a0,
give the asymptotic form

rhi j (r) → 2|Ai j | exp(−a0r) cos(a1r − θi j) (57)

where Ai j = |Ai j | exp(−√−1 θi j), the amplitudes are related by |Aaa||Abb| = |Aab|2 and
the phases are related by θaa + θbb = 2θab [21, 22]. For the Bhatia–Thornton pair correlation
functions, it then follows by substituting in equations (12) that

rhNN(r) → 2|ANN| exp(−a0r) cos(a1r − θNN) (58)

rhCC(r) → 2xa xb|ACC| exp(−a0r) cos(a1r − θCC) (59)

rhNC(r) → 2|ANC| exp(−a0r) cos(a1r − θNC) (60)

where the AI J given by equations (54)–(56) are now complex numbers with amplitudes related
by |ANN||ACC| = |ANC|2 and phases related by θNN + θCC = 2θNC. The common decay
length is given by a−1

0 and the common wavelength of the oscillations is given by 2π/a1.
The crossover from pure exponential decay of the rh I J (r) as described by equations (51)–
(53) to exponentially damped oscillatory decay described by equations (58)–(60) defines a
line in the (ρ, T ) plane known either as the Fisher–Widom line [21, 22, 24, 50] or as the
Kirkwood line [22, 51, 52], depending on the mechanism by which crossover occurs. For a
given temperature T , crossover to exponentially damped oscillatory decay often occurs for
increasing number density ρ.

Note that in the special case when ĉNC(k) = 0 (see section 2.4) the Bhatia–Thornton partial
structure factors of equations (13), (14) and (15) reduce to equations (41), (42) and (43), i.e. the
number density and concentration fluctuations become independent and the previous analysis,
showing the communality between the asymptotic behaviour of the total pair correlation
functions, no longer applies. In this case rhNN(r) will, for example, decay more rapidly than
rhCC(r) if the imaginary part of the leading order pole kNN

p satisfying (1 − ρĉNN(kNN
p )) = 0 is

larger than the imaginary part of the leading order pole kCC
p satisfying (1−ρĉCC(kCC

p )) = 0 [22].
For the restricted primitive model of a binary symmetrical electrolyte comprising charged hard
spheres of equal diameter with SNC(k) = 0, the Fisher–Widom line is associated with the
crossover in the asymptotic decay of the number density fluctuations whereas the Kirkwood
line is associated with the crossover in the asymptotic decay of the concentration fluctuations,
i.e. both crossover mechanisms occur in the same fluid [22].

2.6. Moments of the Bhatia–Thornton pair distribution functions

At small k-values, a series expansion of sin(kr) in equation (11) leads to the expression

SNN(k) − 1 = M (0)
NN + M (2)

NNk2 + M (4)
NNk4 + · · · (61)

where the running moments of [gNN(r) − 1] are defined by [11]

run M (2m)
NN (rmax) =

∫ rmax

0
drρ(2m)

NN (r) (62)

and the weighted pair distribution functions are given by

ρ
(2m)
NN (r) = 4πρ(−1)m

(2m + 1)!
[
gNN(r) − 1

]
r 2m+2 (63)
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with m = 0, 1, 2, . . .. Hence the moments M (2m)

I J of equation (61) are obtained by extending
rmax to infinity in equation (62) and the coefficient of k2m denotes the (2m + 2)th moment
of [gNN(r) − 1]. Equivalent expressions define the running moments runM (2m)

CC (rmax) and
run M (2m)

NC (rmax) that correspond to [SCC(k)/xaxb − 1] and SNC(k)/xaxb together with the
weighted pair distribution functions ρ

(2m)

CC (r) and ρ
(2m)

NC (r) that correspond to gCC(r) and gNC(r)

respectively. Relevant expressions for some of the moments can be obtained by inspecting the
coefficients of the even powers of k in equations (38)–(40) and in equations (44)–(47) (see
also [11]), but care must be exercised since the moment expansion of equation (61) does not
lead to odd powers of k. For instance, when dispersion forces are present the coefficients of
even powers of k greater than the first odd power can differ substantially from the corresponding
coefficients when dispersion forces are absent [53] (also see appendix A).

The contribution to a running second moment from the asymptotic form of the Bhatia–
Thornton pair correlation functions given by equations (58)–(60) can be readily deduced by
integration by parts. For example, when [gNN(r) − 1] is given by equation (58) for r � rmin,
the large-r dependence of the running second moment is given by

4πρ

∫ rmax

rmin

dr [gNN(r) − 1]r 2 = 8πρ
|ANN| exp(−a0rmax)

(a2
0 + a2

1)

×
[

rmax(a1 sin y − a0 cos y) + 2a0a1 sin y + (a2
1 − a2

0) cos y

a2
0 + a2

1

]
+ constant (64)

where y ≡ a1rmax − θNN. Similar expressions hold for the running second moments of gCC(r)

and gNC(r) i.e. when dispersion forces are absent the running second moments of the Bhatia–
Thornton pair correlation functions should all decay exponentially at large r with a common
decay length of a−1

0 .
The expression 1 + runM (0)

NN(rmax) is sometimes called the excess coordination [28].
This follows since the mean number of atoms in a sphere or radius rmax is given by
1 + 4πρ

∫ rmax

0 dr r 2gNN(r) = 1 + n̄, where n̄ ≡ xa
(
n̄a

a + n̄b
a

) + xb
(
n̄b

b + n̄a
b

)
is the mean

coordination number irrespective of species type of an arbitrary atom chosen to be at the origin
of coordinates and

n̄ j
i = 4πρ x j

∫ rmax

0
dr r 2gi j(r) (65)

is the mean coordination number of particles of type j contained within a spherical volume
of radius rmax centred on a particle of type i [54]. For an ideal gas of the same number
density ρ the mean number of particles contained in a sphere of the same radius is equal to
4πρ

∫ rmax

0 dr r 2. Hence 1+4πρ
∫ rmax

0 dr r 2[gNN(r)−1] is a measure of the deviation from ideal
gas behaviour in the mean number of particles contained within a sphere of radius rmax. Often,
a local positive deviation from ideal gas behaviour owing to a peak in gNN(r) is followed
by a negative deviation and the measured excess coordination can be a strongly oscillatory
function [11, 28]. Note that as rmax → ∞, equations (8) and (61) show that the limiting value of
the excess coordination is given by 1 + M (0)

NN = SNN(0) = ρkBT χT + δ2SCC(0), i.e. diffraction
experiments are generally sensitive to fluctuations in the number density of particles, which
depend inter alia on the compressibility of the system.

The measured function runM (0)
CC(rmax) can also be strongly oscillatory [11]. Consider, for

example, the case of a binary ionic system. If chemical species a with charge Za is chosen to
be at the origin of coordinates, the mean charge in a surrounding sphere of radius ra is given by
Za + n̄a

a Za + n̄b
a Zb and will cancel if

Za + 4πρ

∫ ra

0
dr r 2

[
xa Za gaa(r) + xb Zbgab(r)

] = 0. (66)
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Alternatively, if chemical species b with charge Zb is at the origin, the mean charge in a
surrounding sphere of radius rb is given by Zb + n̄b

b Zb + n̄a
b Za and will cancel if

Zb + 4πρ

∫ rb

0
dr r 2

[
xb Zbgbb(r) + xa Zagba(r)

] = 0 (67)

where gab(r) = gba(r). For a symmetrical molten salt with xa = xb = 1/2, Za = −Zb and
gaa(r) = gbb(r) [30] it follows that equations (66) and (67) will hold when ra = rb ≡ r ′. Hence
by subtracting these equations and by using the definition of gCC(r) given by equations (12) it
follows that

run M (0)
CC(r ′) = 4πρ

∫ r ′

0
dr r 2gCC(r) = −1 (68)

which becomes the first Stillinger–Lovett [47] condition when r ′ → ∞, i.e. for an ionic system
M (0)

CC = SCC(0)/xaxb − 1 = −1. As layers of alternate charge are built around a charged
species at the origin, it is feasible that equation (68) will hold for a set of increasingly large
values of r ′, corresponding to a tendency for local charge neutrality, such that 1+ run M (0)

CC(rmax)

oscillates about zero as rmax is made increasingly large. For the restricted primitive model of
a symmetrical electrolyte in which the ions are equi-sized hard spheres of diameter d with
φi j(r) = +∞ for r � d and φi j(r) = Zi Z j e2/ε r for r > d , oscillations in the charge
density will occur if κDd �

√
6 [30, 55]. Estimates of the so-called Kirkwood line in the

phase diagram for the restricted primitive model of a symmetrical electrolyte, marking a change
from pure exponential decay to exponentially damped oscillatory decay of the charge-density
fluctuations, are given in [22].

2.7. Asymptotic decay of the pair correlation functions: dispersion forces

If dispersion forces are present in the pair potentials defined by equation (17), the analysis given
in section 2.5 is no longer valid [23] and it is the term with the lowest odd integer power of k
in equation (38), (39) or (40) that is expected to give rise to the longest-ranged behaviour in
r -space [23, 35, 36]. Provided f̂ I J (k) ≡ kĥ I J (k) and its derivatives exist as ordinary functions
for k � 0 and are well behaved at infinity it can be shown that at large r [56]

2π2rh I J (r) =
∫ ∞

0
dk k ĥ I J (k) sin(kr)

∼ f̂ I J (0)

r
− f̂ ii

I J (0)

r 3
+ f̂ iv

I J (0)

r 5
− f̂ vi

I J (0)

r 7
+ f̂ viii

I J (0)

r 9
− · · · (69)

where the superscripts refer to successive derivatives of f̂ I J (k) with respect to k as evaluated
at k = 0. By considering only those terms in equations (38)–(40) that involve the lowest odd
integer power of k it follows that

rhNN(r) → 12 C(3)

π2

1

r 5
(70)

rhCC(r) → 20 160 C(7)

π2

1

r 9
(71)

rhNC(r) → −360 C(5)

π2

1

r 7
(72)

where C(3), C(5) and C(7) give the coefficients of the k3, k5 and k7 terms in equations (38), (40)
and (39) respectively. These expressions, which were first obtained by Kjellander and
Forsberg [35], show that the dispersion forces result in a power-law decay of the total pair
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correlation functions, as opposed to the exponential decay given by equations (51)–(53) or
equations (58)–(60). The power-law terms should, therefore, determine the ultimate large-r
decay of the Bhatia–Thornton pair correlation functions. If only the Coulomb interaction is
switched off in equation (17), corresponding to a binary system with short-ranged repulsive
forces and long-ranged dispersion forces, the term proportional to k3 is the lowest odd integer
power of k for SNN(k), SNC(k) and SCC(k) (see section 2.3) and all of the corresponding
rh I J (r) pair correlation functions should ultimately decay with an r−5 dependence. The effect
of including ion-induced dipole interactions in the pair potential of equation (17) is briefly
discussed in appendix A.

For some systems at high densities it is found that the total pair correlation functions
can be accurately represented over a wide r -range by summing the results obtained from a
complex leading order pole and a power-law term obtained from the dispersion forces [21, 23].
A convenient reference point for analysing the r -dependence of the Bhatia–Thornton pair
correlation functions obtained from experiment might therefore be obtained by combining the
results of equations (58)–(60) with the results of equations (70)–(72) to give

rhNN(r) → 2|ANN| exp(−a0r) cos(a1r − θNN) + 12 C(3)

π2

1

r 5
(73)

rhCC(r) → 2xaxb|ACC| exp(−a0r) cos(a1r − θCC) + 20 160 C(7)

π2

1

r 9
(74)

rhNC(r) → 2|ANC| exp(−a0r) cos(a1r − θNC) − 360 C(5)

π2

1

r 7
(75)

although it is not clear that the relations |ANN||ACC| = |ANC|2 and θNN + θCC = 2θNC will
remain valid as they were derived for the case when dispersion forces are absent.

3. Experimental results

The Bhatia–Thornton partial structure factors, SI J (k), can be measured by using the method of
isotopic substitution in neutron diffraction [9], the method of isomorphic substitution in neutron
diffraction [57], or the method of combining neutron and x-ray diffraction patterns [40]. For
example, if neutron diffraction experiments are made on three samples of a binary liquid or
glass, which are identical in every respect except for the isotopic composition of chemical
species b, then the corresponding total structure factors of equation (7) can be represented in
matrix notation by[ F(k)

′ F(k)
′′ F(k)

]
=

[ 〈 f 〉2 xaxb( fa − fb)
2 2〈 f 〉( fa − fb)

〈′ f 〉2 xaxb( fa − ′ fb)
2 2〈′ f 〉( fa − ′ fb)

〈′′ f 〉2 xa xb( fa − ′′ fb)
2 2〈′′ f 〉( fa − ′′ fb)

] [ SNN(k) − 1
SCC(k)/xaxb − 1

SNC(k)

]

≡
[ a11 a12 a13

a21 a22 a23

a31 a32 a33

][ SNN(k) − 1
SCC(k)/xaxb − 1

SNC(k)

]
(76)

where fb, ′ fb and ′′ fb represent the different coherent scattering lengths of chemical species b
and the average scattering lengths 〈 f 〉, 〈′ f 〉 and 〈′′ f 〉 are evaluated accordingly. The SI J (k)

can be obtained by inverting this matrix to give[ SNN(k) − 1
SCC(k)/xaxb − 1

SNC(k)

]
= [A]−1

[ F(k)
′ F(k)
′′F(k)

]
(77)

where [A] is the matrix represented by the coefficients alm (l, m = 1, 2, 3) in equation (76).
The determinant |A|n, normalized by dividing each row l of [A] by (

∑
m a2

lm)1/2, is a measure
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of the conditioning of the matrix [58], i.e. of the robustness in the determination of the
SI J (k) resulting from the scattering length ‘contrast’ between the measured total structure
factors. In the present paper, attention is focused on the most recently measured data sets
for which advances in neutron diffraction instrumentation have enabled the SI J (k) to be
obtained by direct inversion of the scattering matrix without the application of any additional
constraints [40]. Unfortunately, this has precluded a detailed investigation of relatively simple
molten salts such as NaCl [59], CaCl2 [60] and SrCl2 [61], although the Bhatia–Thornton
partial structure factors for various molten 2:1 systems are described in [9]. The systems
investigated include l-CuSe [62] and l-GeSe [63, 64], which are molten semiconductors, l-
Ag2Se [65], which melts from a super-ionic phase, and l-GeSe2 [66, 67], which is a network
glass forming semiconductor, where the prefix before the chemical formulae denotes the liquid
phase. The network forming glasses g-GeSe2 [68, 69], g-ZnCl2 [10] and g-GeO2 [12] were
also investigated where the prefix denotes a glass. For these systems, the conditioning of
the Bhatia–Thornton partial structure factors is better than for the corresponding Faber–Ziman
partial structure factors.

The instrumentation used for the diffraction experiments did not access k-values of �0.2–
0.3 Å

−1
or �0.4–0.45 Å

−1
, depending on whether the incident neutron wavelength was 0.7

or 0.5 Å respectively (see below). In consequence, the measured Bhatia–Thornton partial
structure factors were extrapolated to k = 0 by plotting either [SNN(k)− 1], [SCC(k)/xaxb − 1]
or SNC(k)/xaxb versus k2 and fitting a straight line at small k. The corresponding total
pair correlation functions were then obtained by (i) spline-fitting or (ii) not spline fitting the
partial structure factors and then Fourier transforming after the application of a Lorch [70]
modification function M(k) = sin(πk/kmax)/(πk/kmax), where kmax is the maximum
measured k-value (see appendix B). Application of this modification function gives smoother
pair correlation functions at all r -values by comparison with the use of a step modification
function, M(k) = 1 for k � kmax and M(k) = 0 for k > kmax, but leads to a loss in
resolution of the first peaks in r -space. Procedure (i) also leads to smoother pair correlation
functions than procedure (ii) but can lead to spurious features at the largest r -values. To avoid
the latter and to identify a suitable range for fitting, a comparison was made between the plots
of ln |rh I J (r)| versus r obtained from both procedures. The rh I J (r)-functions obtained from
procedure (i) were then fitted at the largest r -values by using equations (58)–(60). Finally, the
fitted parameters were used to calculate the corresponding rh I J (r)-functions at all r -values.

The extrapolation procedure adopted at small k, which assumes quadratic behaviour of
the partial structure factors, is somewhat arbitrary, since coefficients with odd powers of k
can also occur in the small-k region of a partial structure factor (section 2.3). In the case of
ionic systems, some justification for assuming a quadratic dependence arises from the small
magnitude of the dispersion terms relative to the Coulomb terms in equation (17). For instance,
in molecular dynamics simulations of molten ZnCl2 using a polarizable ion model [8], the
parameters used for the pair potentials give a Coulomb energy that is ≈142 times greater
than the dispersion energy for the Zn–Cl pair at a typical nearest-neighbour separation of
5 au (i.e. 2.65 Å). By comparison, the same model when applied to molten GeSe2 corresponds
to a Coulomb energy for the Ge–Se pair that is ≈16 times greater than the dispersion energy
at the same separation [8]. The small-k extrapolation procedure will not, therefore, necessarily
produce rh I J (r)-functions that have the correct asymptotic properties. However, several
theoretical and Monte Carlo studies of systems described by simple model pair potentials
show that the asymptotic behaviour described by equations (50) and (57) can also provide
an accurate description of the total pair correlation functions at distances much shorter than
the longest range [21–23, 25, 26]. Since the features observed at shorter distances are less
sensitive to the details of any small-k fitting procedure, the parameters extracted from the fits to
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Figure 1. The measured Bhatia–
Thornton partial structure fac-
tors SI J (k) for (a) l-CuSe [62],
(b) l-GeSe [63, 64] and (c) l-
Ag2Se [65]. The statistical uncertain-
ties are represented by the scatter in the
data points.

the rh I J (r)-functions will be most robust when the asymptotic behaviour extends to relatively
small r -values for the systems studied experimentally.

The measured SI J (k)-functions are shown in figures 1–3 and the corresponding rh I J (r)-
functions are shown in figures 4–6 together with the functions obtained by fitting the rh I J (r)

at large r and extrapolating to all r -values. For each rh I J (r)-function, the fitted parameters,
the range used for the fits and the R2 goodness-of-fit parameter are summarized in table 1.
The decay length a−1

0 was also obtained from the same data sets in the same r -space range by
plotting ln |rh I J (r)| versus r and fitting the repeated maxima to the straight line ln |rh I J (r)| =
−a0r +constant (see [12]). The corresponding a0-values are also given in table 1.

The values of the measured decay lengths a−1
0 will represent lower limits owing to

the k-space resolution function of the diffractometer. For example, a simple Gaussian
resolution function leads to an exponential damping of the measured rh I J (r)-functions (see
appendix C). In practice, the resolution function of a diffractometer has a more complicated
k-dependence and a suitable correction could be made if sufficient information is known about
the experimental set-up (see e.g. [71]). This is not, however, the case for most of the measured
diffraction patterns, so a resolution function correction was not attempted. Nevertheless, with
the exception of glassy ZnCl2 and GeO2, all of the data sets were measured using the same
diffractometer (D4B at the Institut Laue–Langevin [72]) with an incident neutron wavelength of
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Figure 2. The measured Bhatia–
Thornton partial structure factors
SI J (k) for (a) l-GeSe2 [66, 67] and
(b) g-GeSe2 [68, 69]. The statistical
uncertainties are represented by the
scatter in the data points.

≈ 0.7 Å and comparable resolution functions are to be expected. The data sets for glassy ZnCl2

and GeO2 were measured using the new D4C diffractometer at the Institut Laue–Langevin [73]
with an incident neutron wavelength of ≈0.5 Å under very similar experimental conditions,
i.e. the resolution function is the same for both of these glasses.

4. Discussion

4.1. Description of the measured data sets using simple theory

The results for glassy GeSe2, ZnCl2 and GeO2 show that an exponentially damped oscillatory
function can be used to account for the large-r behaviour of all the measured rh I J (r)-functions.
For rhCC(r) and rhNC(r) this damped oscillatory function also provides a good representation
of the measured data at intermediate values, as small as ≈3 Å in the case of rhCC(r) for g-
GeO2 (figures 5(b) and 6). It is consequently easier to fit these data sets than those for rhNN(r).
In reciprocal space (figures 2(b) and 3), SCC(k) and SNC(k) have sharp principal peaks and are
otherwise relatively featureless compared to SNN(k), which has the ‘three-peak’ character of the
diffraction pattern measured for many network forming glasses [74]. Hence, although SNN(k)

also has a sharp principal peak, the corresponding r -space function shows more complexity
and in the case of g-GeO2, where the intensity of the principal peak is relatively small, it is
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Figure 3. The measured Bhatia–
Thornton partial structure factors
SI J (k) for (a) g-ZnCl2 [10] and (b) g-
GeO2 [12]. The statistical uncertainties
are represented by the scatter in the
data points.

particularly difficult to fit rhNN(r) at large r by using equation (58). A partial structure factor
SI J (k) that is dominated by a single sharp peak is expected to give rise to damped oscillatory
behaviour in real space; e.g., a Lorentzian peak centred at kPP with a full width at half maximum
of 2a0 will give rise to an exponentially damped oscillatory function with a wavelength given
by 2π/kPP and a decay length given by a−1

0 [3].
As shown in table 1, the large-r behaviour of the rh I J (r)-functions for each glass, which

is sometimes called the extended-range ordering, is described by a common wavelength of
oscillation 2π/a1 ≈ 2π/kPP and a roughly common decay length a−1

0 that takes approximate
values of 4.8 Å for g-GeSe2, 5.1 Å for g-ZnCl2 and 3.8 Å for g-GeO2. The relation
|ANN||ACC| = |ANC|2 of section 2.5 does not hold for any of the glasses although the relation
θNN + θCC = 2θNC of section 2.5 does hold, within the experimental error, for glassy ZnCl2 and
GeSe2. In the case of the most recently measured data sets, i.e. those for ZnCl2 and GeO2, the
rh I J (r) were also fitted by using equations (73)–(75). The fits were marginally improved but
the same values for a0 and a1 were obtained within the experimental error. This result might
be anticipated since the rh I J (r)-functions were obtained by inverting partial structure factors
that were extrapolated to small k-values by assuming a quadratic dependence and it is precisely
the behaviour of the SI J (k) in this k-space region that dictates the ultimate decay of the pair
correlation functions in real space. An accurate measurement of the SI J (k) at small k-values
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to the rh I J (r)-functions at large r (see table 1) as extrapolated to all r-values.

is therefore required in order to fully appreciate the effect of dispersion forces on the measured
pair correlation functions at large r .

Nevertheless, although the fitted amplitudes and phases do not necessarily satisfy the
relations |ANN||ACC| = |ANC|2 and θNN + θCC = 2θNC given in section 2.5, it appears that
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Table 1. Parameters obtained by fitting the Bhatia–Thornton pair correlation functions rh I J (r) by
using equations (58)–(60).

System I J a0 (Å
−1

) aa
0 (Å

−1
) a1 (Å

−1
) kPP (Å

−1
) Ab

I J (Å) θI J (rad) R2 Range (Å)

l-CuSe NN 0.40(1) 0.38(4) 3.22(1) 3.24(1) 2.6(2) −1.07(6) 0.98 3.7–10.9
CC 0.42(2) 0.41(7) 3.31(2) 1.86(3) 23(6) 0.7(2) 0.96 10.7–16.3
NC 0.297(7) 0.32(2) 1.889(7) 1.87(1) 2.9(2) 1.66(7) 0.98 8.3–16.8

l-GeSe NN 0.37(2) 0.39(3) 2.86(2) 2.24(2) 4.0(7) −1.4(2) 0.98 7.7–11.2
CC 0.58(2) 0.35(8) 2.42(2) 1.95(5) 17(3) −4.8(1) 0.96 6.5–13.4
NC 0.53(2) 0.7(2) 2.48(2) 2.09(3) 19(4) 4.8(2) 0.98 7.5–11.5

l-Ag2Se NN 0.30(2) 0.4(1) 2.54(2) 2.83(2) 1.5(3) 2.1(2) 0.97 9.7–14.4
CC 0.187(6) 0.21(3) 1.718(5) 1.71(1) 3.6(2) −1.49(5) 0.98 7.2–16.3
NC 0.53(4) 0.43(2) 2.05(3) 1.75(5) 7(2) 0.0(1) 0.90 3.8–10.5

l-GeSe2 NN 0.49(4) — 1.58(3) 2.02(1) 37(18) 3.6(2) 0.85 10.5–18.8
CC 0.41(2) 0.34(5) 1.94(2) 1.97(3) 8.9(8) −0.5(1) 0.91 2.9–12.7
NC 0.41(2) 0.27(3) 2.13(2) 2.01(2) 12(1) 0.93(7) 0.92 3.3–17.4

g-GeSe2 NN 0.24(2) 0.29(5) 2.10(2) 2.04(1) 3(1) −2.6(4) 0.95 15.6–21.0
CC 0.180(4) 0.185(9) 2.093(4) 2.09(1) 4.0(2) −1.68(4) 0.98 7.6–19.4
NC 0.158(9) 0.21(3) 2.104(8) 2.05(1) 3.1(4) −5.3(1) 0.96 10.8–19.8

g-ZnCl2 NN 0.17(1) 0.20(2) 2.11(1) 2.09(1) 1.1(2) −1.8(2) 0.91 15.2–25.6
CC 0.225(5) 0.204(7) 2.133(5) 2.10(1) 8.5(4) −1.89(5) 0.97 7.7–26.9
NC 0.183(4) 0.184(7) 2.119(3) 2.10(1) 5.4(3) 1.34(5) 0.98 10.5–25.5

g-GeO2 NN 0.33(3) 0.27(4) 2.78(3) 2.67(1) 2.1(8) 2.8(4) 0.86 12.3–19.9
CC 0.24(1) 0.23(2) 2.62(1) 2.65(1) 6.3(5) −1.26(7) 0.94 4.7–15.4
NC 0.250(5) 0.26(1) 2.654(5) 2.66(1) 4.7(2) 1.66(5) 0.99 7.1–16.6

a From a straight-line fit to the maxima in ln |rh I J (r)| versus r .
b ANN ≡ 2|ANN|, ACC ≡ 2xa xb|ACC| and ANC ≡ 2|ANC|.
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a simple ionic model might provide a suitable starting point for understanding the extended-
range ordering in these network glasses. Indeed, a rudimentary representation of the structure
of these materials can be provided within the framework of an ionic model. A complication
is, however, provided by the appearance of an FSDP, since this feature is usually taken to be
a signature that directional bonding is an important feature of the inter-atomic interactions [9].
In consequence, it is necessary to go beyond a rigid ion model by the inclusion of polarization
effects such as induced dipoles for systems like ZnCl2 [8, 75, 76], and first principles molecular
dynamics simulations are required for systems like GeSe2 to accurately reproduce important
features such as homopolar bonds and the FSDP in SCC(k) [7, 69, 77–80]. It is notable that
the principal peak gains in importance relative to the FSDP when e.g. the basic tetrahedral
structural motifs are more densely packed, as for ZnCl2 compared with GeO2 or SiO2 [12], or
when systems such as glassy GeSe2 [81] and GeO2 [82] are compressed. Indeed, an interplay
between the ordering on these length scales may help to account for the relative fragility of 2:1
network glass forming systems [12].

By comparison with the glass, it proved problematic to adequately fit the measured rh I J (r)

for the liquid phase of GeSe2 by using equations (58)–(60), especially in the case of rhNN(r),
and the fitted functions do not provide a good representation of the measured rh I J (r) over
a wide r -range (figure 5(a)). The oscillations in rh I J (r) are less pronounced for the liquid
compared to the glass and, with the exception of the FSDP, the features in the corresponding
SI J (k) for the liquid are broader (figure 2). For the liquid, the principal peak in all of the
SI J (k) occurs at the same position kPP ≈ 2 Å

−1
and, at least for rhCC(r) and rhNC(r), the

fitted wavelength of the oscillations is again given by 2π/a1 ≈ 2π/kPP (table 1).
By contrast to the network glasses and liquid GeSe2, the principal peaks in SNN(k) and

SCC(k) for l-Ag2Se occur at substantially different positions of 2.83(2) and 1.71(1) Å
−1

respectively (figure 1(c)). For this liquid, an exponentially damped oscillatory function
accounts for the large-r behaviour of rhNN(r) and rhCC(r) and, in the case of rhCC(r), it
provides an accurate description at all r -values (figure 4(c)), which is consistent with the
appearance of a sharp and dominant principal peak in SCC(k). An exponentially damped
oscillatory function does not, however, provide a good description of rhNC(r) at large r . The
wavelength of the oscillations for rhNN(r) and rhCC(r) is again given by 2π/a1 ≈ 2π/kPP,
but, in accordance with the measured kPP values, it is rather different for each of these functions
(table 1). The oscillations in rhCC(r) also decay more slowly than those for rhNN(r). Within the
framework of a simple ionic model, the observed behaviour for l-Ag2Se could be rationalized in
terms of an asymptotic regime that has not yet been reached in the measured rh I J (r)-functions;
i.e., a common decay length and common wavelength of oscillation would be observed if data
with sufficient accuracy were available at larger r -values. Alternatively, it may be necessary to
move beyond a description of this system in terms of pair potentials as indicated by the need
to use first principles molecular dynamics methods to accurately reproduce measured features
such as the Ag–Ag pair distribution function [65, 83].

For liquid GeSe it proved difficult to satisfactorily fit the large-r behaviour of the rh I J (r)-
functions by using an exponentially damped oscillatory function, and the fitted functions do
not describe the rh I J (r) over a wide r -range (figure 4(b)). For liquid CuSe, by comparison,
an exponentially damped oscillatory function does provide a good account of the measured
rhNN(r) and rhNC(r)-functions over a large r -range, although the corresponding agreement
with the measured rhCC(r)-function is not as impressive (figure 4(a)). For l-CuSe, the fitted
wavelength of the oscillations is given by 2π/a1 ≈ 2π/kPP for rhNN(r) and rhNC(r) but not
for rhCC(r) (table 1). In reciprocal space, SNN(k) shows the largest differences between the
measured partial structure factors for liquid GeSe and CuSe (figures 1(a) and (b)). The liquid
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phase of both these materials is characterized by a large number of homo-polar bonds [62–64];
i.e., the ability of an exponentially damped oscillatory function to account for the large-r
behaviour in l-CuSe is unlikely to result from a predominantly ionic interaction model for this
system. The reason for the differences between the structure of these liquid semiconductors
merits further investigation; e.g., first-principles molecular dynamics simulations of liquid
CuSe would complement those already made for liquid GeSe [84].

4.2. Limitations associated with the simple theory

We find that the large-r behaviour of the measured rh I J (r)-functions for a variety of systems,
that include the network forming glasses GeSe2, ZnCl2 and GeO2, can be adequately described
in terms of exponentially damped oscillatory functions with a wavelength of oscillation given
by 2π/a1 ≈ 2π/kPP, where kPP is the position of the principal peak in the corresponding
partial structure factor. In some cases, which include the measured rhCC(r) for the network
glasses and l-Ag2Se, an exponentially damped oscillatory function actually provides a good
description of the measured data at most r -values. It also appears that the wavelength of this
ordering at large r , which in network glasses is sometimes called the extended-range ordering
since it extends to distances beyond the regime associated with the FSDP [10, 12], is sensitive
to the repulsive part of the inter-atomic forces. For example, the observed periodicity 2π/a1

of 2.99(1), 2.96(1) and 2.34(1) Å for the network glasses GeSe2, ZnCl2 and GeO2 (table 1) is
comparable to the diameter of the larger (electronegative) species, namely 3.89(2), 3.70(1) and
2.83(1) Å respectively, where the latter values are taken from the position of the first main peak
in the measured anion–anion partial pair distribution functions [10, 12, 69]. In binary mixtures
of hard spheres having different diameters, the common wavelength of oscillation is set by one
or other of these diameters depending on the thermodynamic state of the system [25].

An exponentially damped oscillatory decay of the rh I J (r) functions is given by a pole
analysis of the Ornstein–Zernike equations for model fluids with pair potentials that are of finite
range [21, 23, 24] or for a rigid ion model of the pair potentials without dispersion terms [22]. In
these models the principal pole is well separated from higher order poles and all of the poles are
assumed to be simple. It is not obvious, however, that these simple pair potential models should
apply to the systems for which experimental results are presented in section 3, since dispersion
and three-body forces can be important. The presence of dispersion forces leads to an ultimate
power law decay of the pair correlation functions as discussed in section 2.7. The presence
of three- or higher-body interactions means that the potential energy of the system cannot be
obtained by summing the pairwise additive potentials. In consequence, the large-r relation
ci j(r) = −βφi j(r) between the direct correlation function and the pair potential, which leads
to equation (18) and the ensuing theoretical analysis, may need revision [49, 85]. It is however
feasible that the analysis of section 2.5, which leads to an exponentially damped oscillatory
decay of the rh I J (r) functions with a common wavelength of oscillation and a common decay
length, will hold provided ci j(r) = −βφeff

i j (r), where φeff
i j (r) is an effective pair potential that

leads to simple poles. Some evidence in support of this scenario is provided by the comparison
between the experimental results for the network glasses and the predictions of simple theory
shown in figures 5(b) and 6.

It would be interesting to make an analytical investigation of the poles obtained from the
Ornstein–Zernike equations for model pair potentials in order to establish the extent to which
a basic description of the extended-range ordering for a variety of systems such as molten
salts [9], network glasses [12], amorphous metals [86] and colloids [87] can be provided by
simple ideas such as charge ordering and packing constraints. For example, the principal peak
remains a key feature in SCC(k) for network forming liquids and glasses, although chemical
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ordering also occurs on the intermediate length scale as signified by the appearance of an FSDP
(figures 2 and 3).

4.3. Requirement for experimental data over a wide k-range

To provide a more rigorous test of models for the forces of interaction in different systems, it
would be advantageous to be able to accurately measure the partial structure factors over the
widest possible range of k-values, including the small-k regime where the measured SI J (k) are
expected to be particularly sensitive to the details of the corresponding inter-atomic potentials
(see e.g. sections 2.3 and 2.4). Indeed, small-angle scattering data have proved valuable for
extracting information on two- and three-body potentials in rare gas fluids [88]. Diffraction
data over a wide k-range would also prove useful for extracting effective inter-atomic potentials
by the application of various inversion schemes [89, 90] and for providing more exacting
constraints for use in structure refinement methods such as reverse Monte Carlo [91] and
empirical potential structure refinement [92]. Progress in the field can be anticipated as new
neutron diffraction instrumentation becomes available, such as the near- and intermediate-range
order diffractometer (NIMROD) being constructed on the second target station at the ISIS
pulsed neutron source [93], which will simultaneously measure the diffraction pattern for a
sample at both small and large k-values.

5. Conclusion

We find that exponentially damped oscillatory decay of the pair correlation functions, as
predicted from a simple theory with simple pair potentials, describes satisfactorily the measured
data for the network glasses GeSe2, ZnCl2 and GeO2. For each glass, a common decay length
is observed for all of the measured rh I J (r) and also a common wavelength for the oscillations,
which is given by ≈2π/kPP, where kPP is the position of the principal peak. However, the
relations between the amplitudes predicted by the simple theory, namely |ANN||ACC| = |ANC|2,
does not appear to hold for any of the glasses and, although the relation between the phases
θNN + θCC = 2θNC predicted by the simple theory does hold for glassy ZnCl2 and GeSe2,
it does not appear to hold for glassy GeO2. These discrepancies may arise from limitations
associated with the measured data sets, from the effect of dispersion forces, or from the inability
of pair potentials to accurately describe the system structure. For the liquid phase systems
that were investigated, namely GeSe2, Ag2Se, GeSe and CuSe, the ability of an exponentially
damped oscillatory function to account for the observed decay of the pair correlation functions
meets with mixed success. For example, in the case of liquid Ag2Se an exponentially damped
oscillatory function accurately accounts for the measured rhCC(r) at all r -values but does not
provide a good description of the measured rhNC(r) even at large r . For all of these liquids it is
necessary to go beyond simple pair potentials in order to account for measured features such as
the homopolar bonds which occur in GeSe2, GeSe and CuSe. The subject would clearly benefit
from more theoretical analysis of the systems studied experimentally and it is plausible that the
asymptotic decay of the pair correlation functions, or equivalently the small-k behaviour of the
measured structure factors, will provide a route for distinguishing between materials that are in
some sense ionic (e.g. ZnCl2) and those that are not (e.g. GeSe).
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Appendix A. The effect of ion-induced dipole interactions

Consider the case when the pair potentials of equation (17) are augmented to include a term
∝ r−4 which represents ion-induced dipole interactions

φi j(r) = φsr
i j(r) + Zi Z j e2

ε r
− Pi j

r 4
− Ai j

r 6
(A.1)

where Pi j is a parameter (�0) which depends on the polarizability of the ions and their
charges [94, 95]. Following the procedure given in section 2.2, the Fourier transform of the
large-r part of the direct correlation function is given by

ĉi j(k) = ĉsr
i j(k) − 4πβ Zi Z j e2

ε k2
+ pi j k + αi j k3 (A.2)

where pi j = −βπ2 Pi j and the corresponding Bhatia–Thornton partial structure factors are
given by

SNN(k) = κ2
D + [

1 − ρĉsr
CC(k)

]
k2 − ρpCC k3 − ραCC k5

k2 D(k)
,

SCC(k)

xaxb
=

[
1 − ρĉsr

NN(k)
]

k2 − ρpNN k3 − ραNN k5

k2 D(k)
,

SNC(k)

xaxb
= ρĉsr

NC(k) k2 + ρpNC k3 + ραNCk5

k2 D(k)
.

(A.3)

In these equations pNN, pCC and pNC are defined in terms of the pi j for the individual chemical
species by expressions that are equivalent to equations (26)–(28) and the common denominator
is given by

k2 D(k) = κ2
D

[
1 − ρĉsr

NN(k)
] − ρpNNκ2

D k

+ [
(1 − ρĉsr

NN(k))(1 − ρĉsr
CC(k)) − ρaρb ĉsr

NC(k)2
]

k2

− [
ρ αNN κ2

D + ρpNN(1 − ρĉsr
CC) + ρpCC(1 − ρĉsr

NN) − 2ρaρbĉsr
NC pNC

]
k3

+ [
ρ2 pNN pCC − ρaρb p 2

NC

]
k4

− [
ραNN(1 − ρĉsr

CC(k)) + ραCC(1 − ρĉsr
NN(k)) + 2ρaρb αNC ĉsr

NC(k)
]

k5

+ [
ρ2(pNNαCC + pCCαNN) − 2ρaρb pNCαNC

]
k6

+ [
ρ2αNNαCC − ρaρb α2

NC

]
k8. (A.4)

At small k it follows, by using the procedure given in section 2.3, that

SNN(k) = 1

(1 − ρĉsr(0)
NN )

+ pNN

(1 − ρĉsr(0)
NN )2

ρ k + O(k2), (A.5)

SCC(k)

xaxb
= k2

κ2
D

− (1 − ρĉsr(0)
NN )(1 − ρĉsr(0)

CC ) − ρaρb(ĉ
sr(0)

NC )2

κ4
D(1 − ρĉsr(0)

NN )
k4

+ ρρaρb pNN(ĉsr(0)
NC )2 + ρpCC(1 − ρĉsr(0)

NN )2 − 2ρaρb pNCĉsr(0)
NC (1 − ρĉsr(0)

NN )

κ4
D(1 − ρĉsr(0)

NN )2
k5

+ O(k6), (A.6)

SNC(k)

xaxb
= ρĉsr(0)

NC

κ2
D(1 − ρĉsr(0)

NN )
k2 + ρpNC(1 − ρĉsr(0)

NN ) + ρ2 pNNĉsr(0)
NC

κ2
D(1 − ρĉsr(0)

NN )2
k3 + O(k4) (A.7)
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i.e. the term with the lowest odd integer power of k for SNN(k), SNC(k) and SCC(k) is
proportional to k, k3 and k5 respectively. The coefficients of the even powers of k smaller
than the first odd power are the same as those given in equations (38)–(40). By using the
procedure described in section 2.7 it follows that the ultimate large-r behaviour of the total
pair correlation functions is given by rhNN(r) → −C(1)/π2 r 3, rhNC(r) → 12C(3)/π2 r 5

and rhCC(r) → −360C(5)/π2 r 7, where C(1), C(3) and C(5) give the coefficients of the k, k3

and k5 terms in equations (A.5), (A.7) and (A.6) respectively. The small-k behaviour of the
structure factor S(k) and its derivatives for single-component classical fluids interacting with a
pair potential of the form φ(r) ∼ r−n as r → ∞, with n an integer > 3, is described by Nixon
and Silbert [96].

Appendix B. The Lorch modification function

Let us consider a single-component liquid or glass. The Fourier transform expression which
relates the structure factor S(k) to the pair distribution function g(r) for an isotropic system is
given by

g(r) − 1 = 1

2π2ρ r

∫ ∞

0
dk k [S(k) − 1] sin(kr) (B.1)

where ρ is the atomic number density. This equation can be re-written as

−2π iρ r
[
g(r) − 1

] = 1

2π

∫ ∞

−∞
dk k [S(k) − 1] exp(−ikr) (B.2)

where S(k) has been extended to negative argument by defining it as an even function and
i = √−1. In a diffraction experiment, S(k) will be truncated at some finite maximum value,
kmax, so the experiment will not give complete information about every point in r -space. For
example, if a fast Fourier transform algorithm is employed, the range 0 � k � kmax is divided
into N mesh points of equal spacing, which gives rise to N mesh points in r -space of equal
spacing π/kmax [97]. The average of r [g(r) − 1] over an interval � = 2π/kmax can be written
as

−2π iρ

�

∫ r+�/2

r−�/2
dr r

[
g(r) − 1

] = 1

π�

∫ kmax

0
dk k [S(k) − 1]

∫ r+�/2

r−�/2
dr exp(−ikr) (B.3)

and, provided � is sufficiently small, r [g(r)−1] will be approximately constant over the range
from r + �/2 to r − �/2. By integrating with respect to r and then equating the imaginary
parts in equation (B.3), it follows that

g(r) − 1 = 1

2π2ρ r

∫ kmax

0
dk k [S(k) − 1] M(k) sin(kr) (B.4)

where M(k) = sin(ak)/(ak), with a ≡ �/2 = π/kmax, is called the Lorch modification
function [70], which has a first zero at k = kmax.

To find the peak-shape function in r -space that corresponds to the Lorch modification
function M(k), consider the Fourier transform pair

M(r) = 1

2π

∫ ∞

−∞
dk M(k) exp(−ikr) (B.5)

and

F(r) = 1

2π

∫ ∞

−∞
dk F(k) exp(−ikr) (B.6)
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where F(k) is an even function given by F(k) = 1 for |k| � kmax and F(k) = 0 for |k| > kmax.
M(r) is given by M(r) = (2a)−1 for |r | � a and by M(r) = 0 for |r | > a but does not
correspond to the required peak-shape function because M(k) 	= 0 for k > kmax. Instead, the
peak-shape function is given by the Fourier transform relation

P(r) = 1

2π

∫ ∞

−∞
dk P(k) exp(−ikr) (B.7)

where P(k) ≡ F(k)M(k) and F(r) = (πr)−1 sin(πr/a). By the one-dimensional convolution
theorem [98] it then follows that

P(r) =
∫ ∞

−∞
F(r ′)M(r − r ′) dr

= 1

2πa

∫ r+a

r−a

sin(πr ′/a)

r ′ dr ′

= 1

2πa

[
Si

(
π(r + a)

a

)
− Si

(
π(r − a)

a

)]
(B.8)

where the sine integral Si(x) ≡ ∫ x
0 sin(t)/t dt . The maximum of the peak-shape function

occurs at P(0) = Si(π)/(πa) = 0.1876 kmax and its full width at half maximum is given by
5.4366/kmax. Note that P(k) is given by the inverse Fourier transform

P(k) =
∫ ∞

−∞
dr P(r) exp(ikr) (B.9)

and the area under the peak-shape function is unity since∫ ∞

−∞
dr P(r) = P(k = 0) = 1. (B.10)

Appendix C. Diffractometer with a Gaussian resolution function

For simplicity, consider the case of a diffractometer with a Gaussian resolution function [99]

P(k) = exp{−k2/2(�k)2}
(2π)1/2�k

(C.1)

where �k is the standard deviation and, since the resolution function does not create
or annihilate intensity but simply redistributes the available intensity across the measured
diffraction pattern, the area of the Gaussian is chosen to be unity. The Fourier transform of
P(k) is given by

P(r) = 1

2π

∫ ∞

−∞
dk P(k) exp(−ikr) = 1

2π
exp{−(�k)2r 2/2} (C.2)

and, as shown in equation (B.2), the Fourier transform of −2π iρ rh(r) is given by k [S(k) − 1],
where h(r) ≡ [g(r) − 1]. By the one-dimensional convolution theorem [98] it then follows
that
1

2π

∫ ∞

−∞
dk {k [S(k) − 1] ⊗ P(k)} exp(−ikr) = 2π{−2π iρ rh(r)P(r)} (C.3)

where ⊗ denotes the one-dimensional convolution operator. Hence, by equating the imaginary
parts in equation (C.3), it can be readily shown that

h′(r) ≡ 1

2π2ρ r

∫ ∞

0
dk {k [S(k) − 1] ⊗ P(k)} sin(kr)

= 2πh(r)P(r)

= h(r) exp{−(�k)2r 2/2} (C.4)
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i.e. the effect of a diffractometer with a Gaussian resolution function of constant width is to
damp exponentially the total pair correlation function.
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